Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions.
نویسندگان
چکیده
Naturally occurring polysaccharides such as alginic acid and chitosan have been recognized as one of the most effective adsorbents to eliminating low levels of heavy metal ions from waste water stream. The present study intended to use alginic acid and chitosan simultaneously, which are expected to form a rigid matrix structure of beads due to electrostatic interaction between carboxyl groups on alginic acid and amino groups on chitosan, and to prepare alginate-chitosan hybrid gel beads. This could be achieved for the first time by using water-soluble chitosan, which was obtained by deacetylating chitin to 36-39% degree. The water-soluble chitosan dissolved in water could remain in solution in the presence of sodium alginate, and the homogeneous solution of chitosan and alginate was dispensed into a CuCl2 solution to give gel bead particles. The resultant beads were then reinforced by a cross-linking reaction of aldehyde groups on glutaraldehyde with amine groups on the chitosan. The cross-linking reaction made the beads durable under acidic conditions. The adsorption of Cu(II), Co(II), and Cd(II) on the beads was significantly rapid and reached at equilibrium within 10 min at 25 degrees C. Adsorption isotherms of the metal ions on the beads exhibited Freundlich and/or Langmuir behavior, contrary to gel beads either of alginate or chitosan showing a step-wise shape of adsorption isotherm.
منابع مشابه
Enantioselective Release Behavior of Ketoprofen Enantiomers from Alginate-metal Complexes, Monitored by Chiral HPLC
Alginate-metal complexes were prepared with divalent (Ca, Ba, Zn) and trivalent metals (Fe, Al) via congealing method in form of beads. Alginate mixed metals (Ca & Fe) complexes were also prepared by simultaneous and consecutive congealing. The studied beads were blank beads and racemic ketoprofen (KTP) loaded beads. Metal content was determined by atomic absorption spectroscopy and was 1.8% to...
متن کاملBatch Equilibrium and Kinetics Studies of Cd (II) Ion Removal from Aqueous Solution Using Porous Chitosan Hydrogel Beads
In this study chitosan hydrogel beads with porosity ~ 0.86 and diameter ~ 20.07 mm were prepared from 85 % deacetylated chitosan for removal of Cd2+ ions from aqueous solutions. Chitosan powder was dissolved into dilute acetic acid as solvent and formed into spherical beads using a phase inversion technique. The effect of temperature, initial ...
متن کاملCharacterization of alginate polymer and its application in copper removal from liquid wastes
Copper is one of the most dangerous pollutants that require removal from wastewater effluents before being discharged. Here are reported on the adsorption performance of a novel environmental friendly material, calcium alginate gel beads as a non-conventional technique for the successful removal of copper ions from aqueous solution. Batch equilibrium studies were carried out to evaluate the ads...
متن کاملRemediation of soil contaminated with the heavy metal (Cd2+).
Soil contamination by heavy metals is increasing. The biosorption process for removal of the heavy metal Cd(2+) from contaminated soil is chosen for this study due to its economy, commercial applications, and because it acts without destroying soil structure. The study is divided into four parts (1) soil leaching: the relationships between the soil leaching effect and agitation rates, solvent c...
متن کاملNew Approach for Removal of Total Hardness ( Ca2+, Mg2+ ) from Water Using Commercial Polyacrylic Acid Hydrogel Beads, Study and Application
Adsorption and water treatment of Ca (II) and Mg (II) hardness were investigated via adsorption of metal ions onto commercial polyacrylic acid hydrogel beads as a novel sorbent for metal ions (Ca2+, Mg2+) removal and water treatment. Batch equilibrium technique was carried out under the influence of solution pH, contact time, sorbent dosage, initial metal concentration and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 55 1 شماره
صفحات -
تاریخ انتشار 2004